If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+12x-13=0
a = 6; b = 12; c = -13;
Δ = b2-4ac
Δ = 122-4·6·(-13)
Δ = 456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{456}=\sqrt{4*114}=\sqrt{4}*\sqrt{114}=2\sqrt{114}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{114}}{2*6}=\frac{-12-2\sqrt{114}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{114}}{2*6}=\frac{-12+2\sqrt{114}}{12} $
| 5n-13=3(n+1) | | 6x^2+12x=-13 | | -0.20(5a-35)+8=-8(7a+1) | | 2(6c+1)-17=9c+3 | | 4x^2−28x+60=0 | | 100=13x-4 | | 4x2−28x+60=0 | | 3x+25+50=180 | | 2x^2+170=36x | | 2x^2-36x+170=0 | | -2.9x-7=-2.4x+1 | | -3x^2+6=-18 | | 10x^2+40x+40=0 | | 3(x+7)^2-10=23 | | 103+3x=180 | | 3n2+2=-15n | | 103+x+2x=180 | | 4x(6+3)=(4x6)+(4x3) | | x^2=-4(2x=3) | | -8-2=-2+2-y | | 21-42-35-18=x-27 | | x^2+100x-120=0 | | -2-42-4-21=x | | 6s+1=4s-2 | | x/3/10=27/10 | | 36^2m=216^2m+2 | | -10-5x=0.30(18+9x) | | 90+1x+35=-6x+139 | | 3.2=6.8u | | x+2/14=9/13 | | -0.25(36x-12)=-51 | | 13=8p+5 |